C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC. #### Strong-Bolt® 2 Design Information — Concrete #### Carbon-Steel Strong-Bolt 2 Installation Information¹ | Carbon-Steel Strong-E | | | on inionnati | | | No | minal An | chor Diai | neter, d _a | (in.) | | | | 200 (2000) | |--|-------------------|------------------|--------------|---------|---------------|---------------------------------|-----------------------|-----------|-----------------------|-----------------|---------|-----------------------------|----------|----------------| | Characteristic | Symbol | Units | 1/44 | 3/8 | 5
3 | | 1/25 | | 5, | ⁄8 ⁵ | 3, | ⁄ ₄ ⁵ | | 1 ⁵ | | | | | | Instal | lation Inf | ormation | | | | | | | | | | Nominal Diameter | da | in. | 1/4 | 3, | % | | 1/2 | | 5 | /8 | 3 | V/4 | | 1 | | Drill Bit Diameter | d | in. | 1/4 | 3, | 3/8 | | 1/2 | | 5/8 | | 3/4 | | | 1 | | Baseplate Clearance
Hole Diameter ² | d_{c} | in. | 5/16 | 7/- | 16 | 9/16 | | | 11 | /16 | 7/8 | | 1 | 1/8 | | Installation Torque | T _{inst} | ft-lbf | 4 | 3 | 30 | | 60 | | 90 | | 150 | | 2 | 30 | | Nominal Embedment Depth | h _{nom} | in. | 13⁄4 | 17/8 | 27/8 | 2 | 3/4 | 37/8 | 3% | 51/8 | 41/8 | 5¾ | 51/4 | 9¾ | | Effective Embedment Depth | h _{ef} | in. | 1½ | 1½ | 21/2 | 2 | 1/4 | 3% | 23/4 | 41/2 | 3% | 5 | 41/2 | 9 | | Minimum Hole Depth | h _{hole} | in. | 1 1/8 | 2 | 3 | | 3 | 41/8 | 35/8 | 5% | 4% | 6 | 5½ | 10 | | Minimum Overall
Anchor Length | ℓ_{anch} | in. | 21/4 | 23/4 | 3½ | 3 | 3/4 | 5½ | 41/2 | 6 | 5½ | 7 | 7 | 13 | | Critical Edge Distance | Cac | in. | 2½ | 61/2 | 6 | 6½ | 6½ | 7½ | 7½ | 9 | 9 | 8 | 18 | 13½ | | M: 51 D: 1 | C _{min} | in. | 13/4 | 6 | 3 | 7 | 4 | 4 | 6 | 1/2 | 6 | 1/2 | | 8 | | Minimum Edge Distance | for s ≥ | in. | _ | _ | _ | | | _ | | 8 | - | _ | | | | Mr. i | S _{min} | in. | 21/4 | 3 | 3 | 7 | 7 4 4 5 | | | 7 | | 8 | | | | Minimum Spacing | <i>for c</i> ≥ | in. | _ | _ | 8 | | 8 | - | _ | | | | | | | Minimum Concrete Thickness | h _{min} | in | 31/4 | 31/4 | 41/2 | 41/2 | 5½ | 6 | 5½ | 77/8 | 6¾ | 8¾ | 8 | 13½ | | | ' | | | A | dditional | Data | | , | | | • | | ' | - | | Yield Strength | f _{ya} | psi | 56,000 | 92,0 | 92,000 85,000 | | | | | | 70, | 000 | 60, | ,000 | | Tensile Strength | f _{uta} | psi | 70,000 | 115,000 | | | 0,000 115,000 110,000 | | ,000 | 78, | ,000 | | | | | Minimum Tensile and
Shear Stress Area | A _{se} | in. ² | 0.0318 | 0.0514 | | 0.0318 0.0514 0.105 0.166 0.270 | | 0.105 | | 0.166 | | 270 | 70 0.472 | | | Axial Stiffness in Service
Load Range — Cracked and
Uncracked Concrete | β | lb./in. | 73,700³ | 34,8 | 320 | | 91,370 | | 118,840 | | 299,600 | | | | The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D. ^{2.} The clearance must comply with applicable code requirements for the connected element. ^{3.} The tabulated value of β for 1/4"-diameter carbon steel Strong-Bolt 2 anchor is for installations in uncracked concrete only. ^{4.} The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table. ^{5.} The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table. IBC #### Stainless-Steel Strong-Bolt 2 Installation Information¹ | Characteristic | Symbol | Units | | | No | minal And | chor Dian | neter, d _a | (in.) | | | | | |--|-------------------|---------|---|-----------|----------------|----------------------------|--------------|-----------------------|-------|-----------------|-----------------|-----------------|--| | Unaracteristic | Symbol | Units | 1/44 | 3/ | é ⁵ | | 1/25 | | 5/ | ⁄8 ⁵ | 3, | ⁄4 ⁵ | | | | | | Installation Ir | nformatio | n | | | | | | | | | | Nominal Diameter | da | in. | 1/4 | 3, | / 8 | | 1/2 | | 5, | /8 | 3, | V ₄ | | | Drill Bit Diameter | d | in. | 1/4 | 3/8 | | | 1/2 | | 5 | /8 | 3/4 | | | | Baseplate Clearance Hole Diameter ² | d_{c} | in. | 5/16 | 7/16 | | 9/16 | | 11/16 | | 7, | ⁷ /8 | | | | Installation Torque | T _{inst} | ft-lbf | 4 | 3 | 30 | | 65 | | 80 | | 1 | 50 | | | Nominal Embedment Depth | h _{nom} | in. | 13⁄4 | 1% | 27/8 | 23/4 | 3 | 7/8 | 3% | 51/8 | 41/8 | 53/4 | | | Effective Embedment Depth | h _{ef} | in. | 11/2 | 1½ | 2½ | 21/4 | 3 | 3/8 | 2¾ | 4½ | 3% | 5 | | | Minimum Hole Depth | h _{hole} | in. | 17/8 | 2 | 3 | 3 | 4 | 1/8 | 35/8 | 5% | 43/8 | 6 | | | Minimum Overall Anchor Length | ℓ _{anch} | in. | 21/4 | 23/4 | 3½ | 3¾ | 5 | 1/2 | 41/2 | 6 | 5½ | 7 | | | Critical Edge Distance | Cac | in. | 2½ | 6½ | 8½ | 41/2 | - | 7 | 7½ | 9 | 8 | 8 | | | | C _{min} | in. | 13/4 | (| 3 | 61/2 | 5 | 4 | | 4 | (| 6 | | | Minimum Edge Distance | for s ≥ | in. | _ | 1 | 10 | | _ | 8 | | 3 | _ | _ | | | | S _{min} | in. | 21/4 | (| 3 8 | | 5½ | 4 | 6 | 1/4 | 6 | 1/2 | | | Minimum Spacing | for c ≥ | in. | _ | 1 | 10 — | | 8 | | 5 | 1/2 | _ | _ | | | Minimum Concrete Thickness | h _{min} | in. | 31/4 | 31/4 | 41/2 | 41/2 | (| 5 | 5½ | 77/8 | 6¾ | 83/4 | | | | | | Additiona | ıl Data | | | | | | | | | | | Yield Strength | f _{ya} | psi | 96,000 | 80,000 | | 5,000 80,000 92,000 82,000 | | 92,000 | | 000 | 68, | 000 | | | Tensile Strength | f _{uta} | psi | 120,000 | 100,000 | | 100,000 | | 115,000 | | 108,000 | | 95,000 | | | Minimum Tensile and Shear Stress Area | Ase | in.² | n. ² 0.0255 0.0514 0.105 0.166 | | 0.0514 | | 0.0514 0.105 | | 166 | 0.2 | 270 | | | | Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete | β | lb./in. | 54,430 ³ | 29,150 | | 29,150 54,900 | | 61, | 270 | 154 | ,290 | | | ^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D. ^{2.} The clearance must comply with applicable code requirements for the connected element. ^{3.} The tabulated value of β for 1/4"-diameter stainless-steel Strong-Bolt 2 anchor is for installtions in uncracked concrete only. ^{4.} The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table. ^{5.} The %"- through %"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table. ^{*} See p. 13 for an explanation of the load table icons. # C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC. #### Strong-Bolt® 2 Design Information — Concrete | 0 1 01 | 0. 5.1.0 | - | O | D 1 D 1 1 | |-------------|---------------|----------|----------|--------------------------| | Carbon-Stee | Strong-Bolt 2 | lension | Strength | Design Data ¹ | | Oarbon-Steel Strong-Bolt 2 Ten | | Ŭ. | Nominal Anchor Diameter, d _a (in.) | | | | | | | | | | | |---|----------------------|-----------|---|------------------|----------------|------------------|------------|------------------|---------------------|------------------|----------------|--------|---------------------| | Characteristic | Symbol | Units | 1/48 | 3/ | 6 ⁹ | 1, | | 5, |
∕8 ⁹ | 3/ | 4 ⁹ | 1 | 9 | | Anchor Category | 1, 2 or 3 | _ | | | | 1 | | | | | | 2 | 2 | | Nominal Embedment Depth | h _{nom} | in. | 13⁄4 | 1 1/8 | 21/8 | 2¾ | 37/8 | 3% | 51/8 | 41/8 | 5¾ | 51/4 | 9¾ | | | | Steel | Strength in Tensio | n (ACI 3 | 18 Section | on D.5.1) |) | | | | | | | | Steel Strength in Tension | N _{sa} | lb. | 2,225 | 5,6 | 600 | 12, | 100 | 19, | 070 | 29, | 700 | 36, | 815 | | Strength Reduction Factor — Steel Failure ² | ϕ_{sa} | _ | | | | 0.7 | ' 5 | | | | | 0. | 65 | | | Conc | rete Brea | akout Strength in ⁻ | Tension | (ACI 318 | Section | D.5.2)10 | | | | | | | | Effective Embedment Depth | h _{ef} | in. | 1½ | 1½ | 2½ | 21/4 | 3% | 23/4 | 41/2 | 3% | 5 | 4½ | 9 | | Critical Edge Distance | Cac | in. | 21/2 | 6½ | 6 | 6½ | 7½ | 7½ | 9 | 9 | 8 | 18 | 13½ | | Effectiveness Factor —
Uncracked Concrete | k _{uncr} | _ | 24 | | | | | | | | | | | | Effectiveness Factor —
Cracked Concrete | k _{cr} | | 7 | | | | | 1 | 7 | | | | | | Modification Factor | $\psi_{c,N}$ | | 7 | | | | | 1. | 00 | | | | | | Strength Reduction Factor —
Concrete Breakout Failure ³ | ϕ_{cb} | _ | | | | 0.6 | 35 | | | | | 0. | 55 | | | | Pullout | Strength in Tensio | n (ACI 3 | 18 Secti | on D.5.3 |)10 | | | | | | | | Pullout Strength, Cracked Concrete $(f'_{c} = 2,500 \text{ psi})$ | N _{p,cr} | lb. | 7 | 1,3005 | 2,7755 | N/A ⁴ | 3,7355 | N/A ⁴ | 6,9855 | N/A ⁴ | 8,5005 | 7,7005 | 11,1855 | | Pullout Strength, Uncracked Concrete $(f_C^1 = 2,500 \text{ psi})$ | N _{p,uncr} | lb. | N/A ⁴ | N/A ⁴ | 3,3405 | 3,6155 | 5,2555 | N/A ⁴ | 9,0255 | 7,1155 | 8,8705 | 8,3605 | 9,6905 | | Strength Reduction Factor —
Pullout Failure ⁶ | ϕ_p | _ | 0.65 0.55 | | | | | | | | | | | | | Tensile | Strengt | h for Seismic App | lications | (ACI 31 | 8 Section | 1 D.3.3.)¹ | 0 | | | | | | | Tension Strength of Single Anchor for Seismic Loads ($f_c = 2,500 \text{ psi}$) | N _{p.eq} | lb. | 7 | 1,3005 | 2,7755 | N/A ⁴ | 3,7355 | N/A ⁴ | 6,9855 | N/A ⁴ | 8,5005 | 7,7005 | 11,185 ⁵ | | Strength Reduction Factor —
Pullout Failure ⁶ | ϕ_{eq} | _ | 0.65 0.55 | | | | | | |
 | | | - 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below. - 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4. - 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c). - 4. N/A (not applicable) denotes that pullout resistance does not need to be considered. - 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5. - 6. The tabulated value of ϕ_D or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4(c). - 7. The ¼"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table. - 8. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. - 9. The %"- through %"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. ^{*} See p. 13 for an explanation of the load table icons Stainless-Steel Strong-Bolt 2 Tension Strength Design Data¹ 0.65 | Characteristic | Cumbal | Units | Nominal Anchor Diameter, d _a (in.) | | | | | | | | | | | | |---------------------------|------------------|------------|---|------------------|-----------------|-----|-------------------|-----|------------------|------|-----|--|--|--| | Granacteristic | Symbol | Ullits | 1/410 | 3/ | 8 ¹¹ | 1, | / ¹¹ 2 | 5/ | /8 ¹¹ | 3/ | 411 | | | | | Anchor Category | 1, 2 or 3 | _ | | | | | 1 | | | | | | | | | Nominal Embedment Depth | h _{nom} | in. | 13/4 | 1 1/8 | 27/8 | 2¾ | 37/8 | 3% | 51/8 | 41/8 | 5¾ | | | | | | Steel Stre | ngth in Te | ension (ACI 318 Se | 8 Section D.5.1) | | | | | | | | | | | | Steel Strength in Tension | N _{sa} | lb. | 3,060 | 5,1 | 40 | 12, | 075 | 17, | 930 | 25, | 650 | | | | #### Strength Reduction Factor — Steel Failure² ϕ_{sa} 0.75 Concrete Breakout Strength in Tension (ACI 318 Section D.5.2)12 5 h_{ef} Effective Embedment Depth 1 1/2 21/2 21/4 3% 23/4 41/2 3% 11/2 8 Critical Edge Distance in 21/2 61/2 81/2 41/2 7 71/2 9 8 c_{ac} Effectiveness Factor — Uncracked Concrete 24 | Effectiveness Factor — Cracked Concrete | k _{cr} | 9 | 17 | |---|-----------------|---|------| | Modification Factor | $\psi_{c,N}$ | 9 | 1.00 | | | | | | | Strength Reduction Factor — Concrete Breakout Failure ³ | ¢ | cb | _ | | | |--|---|----|---|--|--| | | | | | | | | Pullout Strength, Cracked Concrete (f' $_{\mathcal{C}}=2,500$ psi) | N _{p,cr} | lb. | 9 | 1,720 ⁶ | 3,1456 | 2,5605 | 4,3055 | N/A ⁴ | 6,545 ⁷ | N/A ⁴ | 8,2305 | |---|---------------------|-----|--------------------|--------------------|--------|--------|--------|------------------|--------------------|--------------------|--------| | Pullout Strength, Uncracked Concrete ($f'_c = 2,500 \text{ psi}$) | N _{p,uncr} | lb. | 1,925 ⁷ | N/A ⁴ | 4,7706 | 3,2305 | 4,4955 | N/A ⁴ | 7,6155 | 7,725 ⁷ | 9,6257 | | Strength Reduction Factor — Pullout Failure ⁸ | ϕ_p | _ | | | | 0. | 65 | | | | | Pullout Strength in Tension (ACI 318 Section D.5.3)12 #### Tensile Strength for Seismic Applications (ACI 318 Section D.3.3.)12 | Tension Strength of Single Anchor for Seismic Loads (f' $_{\text{C}}$ = 2,500 psi) | N _{p.eq} | lb. | 9 | 1,7206 | 2,830 ⁶ | 2,560⁵ | 4,305⁵ | N/A ⁴ | 6,545 ⁷ | N/A ⁴ | 8,2305 | |--|-------------------|-----|---|--------|--------------------|--------|--------|------------------|--------------------|------------------|--------| | | , | | | | | 0 | 0.5 | | | | | Strength Reduction Factor — Pullout Failure8 0.65 - 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below. - The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4. - 3. The tabulated value of φ_{Ch} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c). - 4. N/A (not applicable) denotes that pullout resistance does not need to be considered. - 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5. - 6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f°_c/2,500 psi)^{0.3}. - The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c/2,500 psi)^{0.4}. - The tabulated value of ϕ_p or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACl 318-11 Section D.4.4(c). - 9. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table. - 10. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. - 11. The %"- through 3/4"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. ^{*} See p. 13 for an explanation of the load table icons. #### Carbon-Steel Strong-Bolt 2 Shear Strength Design Data¹ | Characteristic | Cumbal | Units | Nominal Anchor Diameter, d _a (in.) | | | | | | | | | | | |--|--------------------|-----------|---|---|-----------------|-----------|-----------------|-------|-----------------|-------|----------------|-------|-------| | Characteristic | Symbol | Units | 1/46 | 3, | ⁄8 ⁷ | 1/: | ′2 ⁷ | 5/ | /8 ⁷ | 3/ | 4 ⁷ | 1 | 7 | | Anchor Category | 1, 2 or 3 | _ | | | | 1 | 1 | | | | | | 2 | | Nominal Embedment Depth | h _{nom} | in. | 13/4 | 1% | 27/8 | 23/4 | 3% | 3% | 51/8 | 41/8 | 5¾ | 51/4 | 9¾ | | | | | Steel Strength in | eel Strength in Shear (ACI 318 Section D.6.1) | | | | | | | | | | | Steel Strength in Shear | V _{sa} | lb. | 965 | 1,8 | 300 | 7,2 | 235 | 11, | 035 | 14, | 480 | 15, | 020 | | Strength Reduction Factor —
Steel Failure ² | ϕ_{sa} | _ | 0.65 | | | | | | | | | 60 | | | | | Concre | ete Breakout Strength in Shear (ACI 318 Section D.6.2) ⁸ | | | | | | | | | | | | Outside Diameter | da | in. | 0.25 0.375 0.500 0.625 0.750 1.00 | | | | | | | | | | 00 | | Load-Bearing Length of
Anchor in Shear | ℓ_e | in. | 1.500 | 1.500 | 2.500 | 2.250 | 3.375 | 2.750 | 4.500 | 3.375 | 5.000 | 4.500 | 8.000 | | Strength Reduction Factor —
Concrete Breakout Failure ² | $\phi_{\it cb}$ | _ | | | | | 0.7 | 70 | | | | | | | | | Cond | rete Pryout Stren | gth in Sh | ear (ACI | 318 Secti | on D.6.3) | | | | | | | | Coefficient for Pryout Strength | k _{cp} | _ |
1.0 | | 2.0 | 1.0 | | | | 2.0 | | | | | Effective Embedment Depth | h _{ef} | in. | 1½ | 1½ | 2½ | 21/4 | 3% | 23/4 | 41/2 | 3% | 5 | 41/2 | 9 | | Strength Reduction Factor —
Concrete Pryout Failure ⁴ | ϕ_{cp} | _ | | | | | 0.7 | 70 | | | | | | | | Ste | eel Stren | ength in Shear for Seismic Applications(ACI 318 Section D.3.3.) | | | | | | | | | | | | Shear Strength of Single Anchor for Seismic Loads ($f'_c = 2,500 \text{ psi}$) | V _{sa.eq} | lb. | 5 | 1,8 | 300 | 6,5 | 510 | 9,9 | 930 | 11, | 775 | 15, | 020 | | Strength Reduction Factor —
Steel Failure ² | ϕ_{sa} | _ | 0.65 0.60 | | | | | | | | | | | - The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below. - 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4. - 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c). - 4. The tabulated value of ϕ_{cp} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{cp} must be determined in accordance with ACI 318-11 Section D.4.4(c). - 5. The 1/4"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table. - 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. - 7. The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. Stainless-Steel Strong-Bolt 2 Shear Strength Design Data¹ | Chamatanistia | Compleal | Heite | Nominal Anchor Diameter, d _a (in.) | | | | | | | | | | |--|--------------------|------------|---|------------|-----------------|-------|------------------|-------|-----------------|-------|-------|--| | Characteristic | Symbol | Units | 1/46 | 3/ | ′в ⁷ | 1 | / ₂ 7 | 5, | ⁄8 ⁷ | 3/ | 47 | | | Anchor Category | 1, 2 or 3 | _ | 1 | | | | | | | | | | | Nominal Embedment Depth | h _{nom} | in. | 13⁄4 | 17/8 | 27/8 | 23/4 | 37/8 | 3% | 51/8 | 41/8 | 5¾ | | | | Steel Stre | ngth in S | hear (ACI 318 Sec | ction D.6. | 1) | | | | | | | | | Steel Strength in Shear | V _{sa} | lb. | 1,605 | 3,0 |)85 | 7,2 | 245 | 6,745 | 10,760 | 15, | 045 | | | Strength Reduction Factor — Steel Failure ² | φ _{sa} | _ | 0.65 | | | | | | | | | | | Concr | ete Breako | ut Streng | th in Shear (ACI 3 | 18 Section | on D.6.2) | 8 | | | | | | | | Outside Diameter | da | in. | 0.250 | 0.3 | 375 | 0.0 | 500 | 0.6 | 625 | 0.7 | '50 | | | Load Bearing Length of Anchor in Shear | ℓ_e | in. | 1.500 | 1.500 | 2.500 | 2.250 | 3.375 | 2.750 | 4.500 | 3.375 | 5.000 | | | Strength Reduction Factor — Concrete Breakout Failure ³ | фсь | | | | | 0. | 70 | | | | | | | Con | crete Pryou | t Strengt | h in Shear (ACI 31 | 18 Section | n D.6.3) | | | | | | | | | Coefficient for Pryout Strength | k _{cp} | _ | 1.0 | | 2.0 | 1.0 | | | 2.0 | | | | | Effective Embedment Depth | h _{ef} | in. | 1½ | 11/2 | 2½ | 21/4 | 3% | 23/4 | 41/2 | 3% | 5 | | | Strength Reduction Factor — Concrete Pryout Failure ⁴ | фср | _ | 0.70 | | | | | | | | | | | Steel Stren | gth in Shea | r for Seis | Seismic Applications (ACI 318 Section D.3.3.) | | | | | | | | | | | Shear Strength of Single Anchor for Seismic Loads (${\rm f'}_{\it C}=2{,}500~{\rm psi}$) | V _{sa.eq} | lb. | o. — ⁵ 3,085 6,100 6,745 10,760 13,620 | | | | | | | | | | | Strength Reduction Factor — Steel Failure ² | ϕ_{sa} | _ | 0.65 | | | | | | | | | | - 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below. - 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4. - 3. The tabulated value of φ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c). - 4. The tabulated value of ϕ_{CP} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{CP} must be determined in accordance with ACI 318-11 Section D.4.4(c). - 5. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table. - 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. - 7. The %"- through 34"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136. ^{*} See p. 13 for an explanation of the load table icons. Carbon-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4} | Design Information | Cumbal | Units | Nominal | Anchor Diam | eter (in.) | |---|-----------------------------|--------|---------|-------------|------------| | Design information | Symbol | UIIIIS | 3, | /8 | 1/2 | | Nominal Embedment Depth | h _{nom} | in. | 1 | 2¾ | | | Effective Embedment Depth | h _{ef} | in. | 1 | 21/4 | | | Minimum Concrete Thickness ⁵ | h _{min,deck} | in. | 21/2 | 31/4 | 31/4 | | Critical Edge Distance | C _{ac,deck,top} | in. | 43/4 | 4 | 4 | | Minimum Edge Distance | C _{min, deck, top} | in. | 43/4 | 41/2 | 43/4 | | Minimum Spacing | S _{min,deck,top} | in. | 7 | 61/2 | 8 | For SI: 1 inch = 25.4mm; 1 lbf = 4.45N - 1. Installation must comply with the table on p. 136 and Figure 1 below. - Design capacity shall be based on calculations according to values in the tables on pp. 138 and 140. - 3. Minimum flute depth (distance from top of flute to bottom of flute) is $1\frac{1}{2}$ ". - 4. Steel deck thickness shall be a minimum 20 gauge. - 5. Minimum concrete thickness (*h_{min,deck}*) refers to concrete thickness above upper flute. Stainless-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4} | Decign Information | Cumbal | Units | Nominal Anchor Diameter (in.) | | | | | |---|---------------------------|--------|-------------------------------|------|------|--|--| | Design Information | Symbol | UIIILS | 3, | /8 | 1/2 | | | | Nominal Embedment Depth | h _{nom} | in. | 17/8 | | 23/4 | | | | Effective Embedment Depth | h _{ef} | in. | 11/2 | | 21/4 | | | | Minimum Concrete Thickness ⁵ | h _{min,deck} | in. | 21/2 | 31/4 | 31/4 | | | | Critical Edge Distance | C _{ac,deck,top} | in. | 43/4 | 4 | 4 | | | | Minimum Edge Distance | C _{min,deck,top} | in. | 4 | 3/4 | 6 | | | | Minimum Spacing | S _{min,deck,top} | in. | 6 | 1/2 | 8 | | | For SI: 1 inch = 25.4mm; 1 lbf = 4.45N - 1. Installation must comply with the table on p. 137 and Figure 1 below. - 2. Design capacity shall be based on calculations according to values in the tables on pp. 139 and 141. - 3. Minimum flute depth (distance from top of flute to bottom of flute) is 1½". - 4. Steel deck thickness shall be a minimum 20 gauge. - 5. Minimum concrete thickness (*h_{min,deck}*) refers to concrete thickness above upper flute. * See p. 13 for an explanation of the load table icons **Mechanical** Anchors # Strong-Bolt® 2 Design Information — Concrete SIMPSON Strong-Tie Carbon-Steel Strong-Bolt 2 Tension and
Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,8,9} | | | | | | | Nominal A | nchor Dia | meter (in.) |) | | | |--|--------------------------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Characteristic | Symbol | Units | | | | C | arbon Ste | el | | | | | | Syllibol | UIIILS | | | L | ower Flut | е | | | Upper Flute | | | | | | 3, | / ₈ | 1, | /2 | 5, | / ₈ | 3/4 | 3/8 | 1/2 | | Nominal Embedment Depth | h _{nom} | in. | 2 | 3% | 23/4 | 41/2 | 3% | 5% | 41/8 | 2 | 2¾ | | Effective Embedment Depth | h _{ef} | in. | 1 5/8 | 3 | 21/4 | 4 | 23/4 | 5 | 3% | 1 1 1/8 | 21/4 | | Installation Torque | T _{inst} | ftlbf. | 3 | 10 | 6 | 0 | 9 | 0 | 150 | 30 | 60 | | Pullout Strength, concrete on metal deck (cracked)3,4 | N _{p,deck,cr} | lb. | 1,040 ⁷ | 2,615 ⁷ | 2,0407 | 2,730 ⁷ | 2,615 ⁷ | 4,9907 | 2,815 ⁷ | 1,340 ⁷ | 3,785 ⁷ | | Pullout Strength, concrete on metal deck (uncracked)3,4 | N _{p,deck,uncr} | lb. | 1,765 ⁷ | 3,150 ⁷ | 2,580 ⁷ | 3,8407 | 3,6857 | 6,565 ⁷ | 3,8007 | 2,275 ⁷ | 4,795 ⁷ | | Pullout Strength, concrete on metal deck (seismic)3,4 | N _{p,deck,eq} | lb. | 1,0407 | 2,615 ⁷ | 2,0407 | 2,730 ⁷ | 2,615 ⁷ | 4,9907 | 2,815 ⁷ | 1,340 ⁷ | 3,785 ⁷ | | Steel Strength in Shear, concrete on metal deck ⁵ | V _{sa,deck} | lb. | 1,595 | 3,490 | 2,135 | 4,580 | 2,640 | 7,000 | 4,535 | 3,545 | 5,920 | | Steel Strength in Shear, concrete on metal deck (seismic) ⁵ | V _{sa,deck,eq} | lb. | 1,595 | 3,490 | 1,920 | 4,120 | 2,375 | 6,300 | 3,690 | 3,545 | 5,330 | - The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below. - 2. Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum. - 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted. - 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies $N_{\mathcal{D},deck,cr}$ shall be substituted for $N_{\mathcal{D},cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in - uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for N_p . - 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{Sa}, deck shall be substituted for V_{Sa}. For seismic loads, V_{Sa,deck,eq} shall be substituted for V_{Sa}. - 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{\it ef}$ or 1.5 times the flute width. - 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_c/3,000~\mathrm{psi})^{0.5}$. - 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_C, of 3,000 psi. - 9. Minimum distance to edge of panel is 2h_{ef}. # Stainless-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,10,11} | | | | Stainless Steel | | | | | | | | | | |--|--------------------------|--------|--------------------|----------------|--------------------|--------------------|--------------------|--------------------|--------|--------|--------------------|--| | Characteristic | Symbol | Units | Lower Flute | | | | | | | | Upper Flute | | | | | | 3, | / ₈ | 1 | /2 | 5, | / ₈ | 3/4 | 3/8 | 1/2 | | | Nominal Embedment Depth | h _{nom} | in. | 2 | 3% | 23/4 | 41/2 | 3% | 5% | 41/8 | 2 | 2¾ | | | Effective Embedment Depth | h _{ef} | in. | 1% | 3 | 21/4 | 4 | 23/4 | 5 | 3% | 1 5/8 | 21/4 | | | Installation Torque | T _{inst} | ftlbf. | 3 | 30 | 6 | 5 | 8 | 0 | 150 | 30 | 65 | | | Pullout Strength, concrete on metal deck (cracked) ³ | N _{p,deck,cr} | lb. | 1,2308 | 2,6058 | 1,990 ⁷ | 2,550 ⁷ | 1,750 ⁹ | 4,0209 | 3,0307 | 1,5508 | 2,055 ⁷ | | | Pullout Strength, concrete on metal deck (uncracked) ³ | N _{p,deck,uncr} | lb. | 1,5808 | 3,9508 | 2,475 ⁷ | 2,660 ⁷ | 2,470 ⁷ | 5,000 ⁷ | 4,2759 | 1,9908 | 2,560 ⁷ | | | Pullout Strength, concrete on metal deck (seismic) ⁵ | N _{p,deck,eq} | lb. | 1,230 ⁸ | 2,3458 | 1,990 ⁷ | 2,550 ⁷ | 1,750 ⁹ | 4,0209 | 3,0307 | 1,5508 | 2,055 ⁷ | | | Steel Strength in Shear, concrete on metal deck4 | V _{sa,deck} | lb. | 2,285 | 3,085 | 3,430 | 4,680 | 3,235 | 5,430 | 6,135 | 3,085 | 5,955 | | | Steel Strength in Shear, concrete on metal deck (seismic) ⁵ | V _{sa,deck,eq} | lb. | 2,285 | 3,085 | 2,400 | 3,275 | 3,235 | 5,430 | 5,520 | 3,085 | 4,170 | | - The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below. - Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum. - For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted. - 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N_{D,deck,cr} shall be substituted for N_{D,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{D,deck,uncr} shall be substituted for N_{D,uncr}. For seismic loads, N_{D,deck,eq} shall be substituted for N_D. - 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa}, deck,eq shall be substituted for V_{sa}. - The minimum anchor spacing along the flute must be the greater of 3.0hef or 1.5 times the flute width. - The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_C / 3,000 psi)^{0.5}. - 8. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_c^*/3,000~\mathrm{psi})^{0.3}$. - 9. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f' $_{\rm C}$ / 3,000 psi) $^{0.4}$. - Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi. - 11. Minimum distance to edge of panel is 2hef. ^{*} See p. 13 for an explanation of the load table icons. Carbon-Steel Strong-Bolt 2 Anchor Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck, Floor and Roof Assemblies^{1,2,6,8,9} | | | | Carbon Steel Nominal Anchor Diameter (in.) | | | | | | | | |--|--------------------------|--------|--|-------|-------|-------|-------|----------|--|--| | Characteristic | Symbol | Units | Installed in Lower Flute | | | | | | | | | | | | 3, | /8 | 1, | /2 | 5, | % | | | | Nominal Embedment Depth | h _{nom} | in. | 2 | 3% | 23/4 | 41/2 | 3% | 5% | | | | Effective Embedment Depth | h _{ef} | in. | 1% | 3 | 21/4 | 4 | 23/4 | 5 | | | | Minimum Hole Depth | h _{hole} | in. | 21/8 | 3½ | 3 | 43/4 | 3% | 5% | | | | Minimum Concrete Thickness | h _{min,deck} | in. | 2 | 2 | 2 | 31/4 | 2 | 31/4 | | | | Installation Torque | T _{inst} | ftlbf. | 3 | 0 | 6 | 60 | 9 | 0 | | | | Pullout Strength, concrete on metal deck (cracked)3,4,7 | N _{p,deck,cr} | lb. | 1,295 | 2,705 | 2,585 | 4,385 | 3,015 | 5,120 | | | | Pullout Strength, concrete on metal deck (uncracked) ^{3,4,7} | N _{p,deck,uncr} | lb. | 2,195 | 3,260 | 3,270 | 6,165 | 4,250 | 6,735 | | | | Pullout Strength, concrete on metal deck (seismic) ^{3,4,7} | N _{p,deck,eq} | lb. | 1,295 | 2,705 | 2,585 | 4,385 | 3,015 | 5,120 | | | | Steel Strength in Shear, concrete on metal deck ⁵ | V _{sa,deck} | lb. | 1,535 | 3,420 | 2,785 | 5,950 | 3,395 | 6,745 | | | | Steel Strength in Shear, concrete on metal deck (seismic) ⁵ | V _{sa,deck,eq} | lb. | 1,535 | 3,420 | 2,505 | 5,350 | 3,055 | 6,070 | | | - The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below. - 2. Profile steel deck must comply with the configuration in Figure 3 below, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 50
with minimum yield strength of 50,000 psi. Concrete compressive strength shall be 3,000 psi minimum. - For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted. - 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies $N_{p,deck,cr}$ shall be substituted for $N_{p,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for N_p . - 5. In accordance with ACI 318-14 Section 17.5.1.2(c) or ACI 318-11, the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa,deck,eq} shall be substituted for V_{sa}. - 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{ef}$ or 1.5 times the flute width. - 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_C^*/3,000 \text{ ps})^{0.5}$. - 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi. - 9. Minimum distance to edge of panel is $2h_{ef}$ Figure 3 ^{*} See p. 13 for an explanation of the load table icons ## Strong-Bolt® 2 Design Information — Masonry **Mechanical** Anchors Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU | IBC 👚 | → | 7 | |-------|----------|---| |-------|----------|---| | Size | Drill Bit | Min. Embed. | Install. Torque | | | | Tension Load | | r Load | | |-------------------|---------------|---------------------|--------------------|------------------------|-----------------------|---------------------|----------------------|-----------------------|----------------------|-----------------------| | in.
(mm) | Dia.
(in.) | Depth
in. (mm) | ftlb.
(N-m) | Edge Dist.
in. (mm) | End Dist.
in. (mm) | Spacing
in. (mm) | Ultimate
lb. (kN) | Allowable
lb. (kN) | Ultimate
lb. (kN) | Allowable
lb. (kN) | | | | | Anchor | Installed in the | Face of the C | /IU Wall (See Fi | gure 1) | | | | | 1/4 (6.4) | 1/4 | 13/4 (45) | 4 (5.4) | 12 (305) | 12 (305) | 8
(203) | 1,150 (5.1) | 230 (1.0) | 1,500 (6.7) | 300 (1.3) | | 3/8 (9.5) | 3/8 | 25/8 (67) | 20 (27.1) | 12 (305) | 12 (305) | 8 (203) | 2,185 (9.7) | 435 (1.9) | 3,875 (17.2) | 775 (3.4) | | ½ (12.7) | 1/2 | 3½ (89) | 35 (47.5) | 12 (305) | 12 (305) | 8 (203) | 2,645 (11.8) | 530 (2.4) | 5,055 (22.5) | 1,010 (4.5) | | 5% (15.9) | 5/8 | 4 %
(111) | 55 (74.6) | 20 (508) | 20 (508) | 8 (203) | 4,460 (19.8) | 890 (4.0) | 8,815 (39.2) | 1,765 (7.9) | | 3/4 (19.1) | 3/4 | 51⁄4 (133) | 100 (135.6) | 20 (508) | 20 (508) | 8 (203) | 5,240 (23.3) | 1,050 (4.7) | 12,450 (55.4) | 2,490 (11.1) | - The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC. - 2. Listed loads may be applied to installations on the face of the CMU wall at least 11/4" away from headjoints. - 3. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m , at 28 days is 1,500 psi. - 4. Embedment depth is measured from the outside face of the concrete masonry unit. - 5. Tension and shear loads may be combined using the parabolic interaction equation (n = $\frac{4}{3}$). - Refer to allowable load adjustment factors for edge distance and spacing on p. 146. - Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code. Figure 1 # Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-weight and Normal-Weight Grout-Filled CMU | Size Drill Bit | | Dia Denth Iorqu | | Min.
Edge. Dist. | | | Tensio | Tension Load | | Shear Load
Perp. To Edge | | Shear Load
Parallel To Edge | | |------------------|-----|---------------------|------------------|---------------------|-----------------|----------------|----------------------|-----------------------|----------------------|-----------------------------|----------------------|--------------------------------|--| | in.
(mm) | in. | in.
(mm) | ftÌb.
(N-m) | in.
(mm) | in.
(mm) | in.
(mm) | Ultimate
lb. (kN) | Allowable
lb. (kN) | Ultimate
lb. (kN) | Allowable
lb. (kN) | Ultimate
lb. (kN) | Allowable
lb. (kN) | | | | | | А | nchor Install | ed in Cell Ope | ening or Web | (Top of Wall) | (See Figure | 2) | | | | | | ½ (12.7) | 1/2 | 3½ (89) | 35 (47.5) | 13/4 (45) | 12 (305) | 8 (203) | 2,080 (9.3) | 415 (1.8) | 1,165 (5.2) | 235 (1.0) | 3,360 (14.9) | 670 (3.0) | | | 5% (15.9) | 5/8 | 4 %
(111) | 55 (74.6) | 13/4 (45) | 12 (305) | 8 (203) | 3,200 (14.2) | 640 (2.8) | 1,370 (6.1) | 275 (1.2) | 3,845 (17.1) | 770 (3.4) | | - The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC. - 2. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m , at 28 days is 1,500 psi. - 3. Tension and shear loads may be combined using the parabolic interaction equation (n = 5%). - 4. Refer to allowable load adjustment factors for edge distance and spacing on p. 146. - 5. Allowable loads may be increased 33%% for short-term loading due to wind forces or seismic forces where permitted by code. Figure 2 ^{*} See p. 13 for an explanation of the load table icons. # C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC. #### **Strong-Bolt® 2** Design Information — Masonry Carbon-Steel Strong-Bolt 2 Allowable Load Adjustment Factors for Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads #### How to use these charts: - 1. The following tables are for reduced edge distance and spacing. - 2. Locate the anchor size to be used for either a tension and/or shear load application. - 3. Locate the embedment (E) at which the anchor is to be installed. - 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed. #### Edge or End Distance Tension (f.) | Luge | JI LIIU | Distai | ICC ICI | 131011 (1 | C) | | _ | |---------------------------|-------------------|--------|---------|-----------|------|------|-----------| | | Dia. | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | IBC | | | Ε | 13/4 | 2% | 31/2 | 4% | 51/4 | | | c _{act}
(in.) | c _{cr} | 12 | 12 | 12 | 20 | 20 | | | (111.) | C _{min} | 2 | 4 | 4 | 4 | 4 | 87 B2 | | | f _{cmin} | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | (22) | | 2 | | 1.00 | | | | | | | 4 | | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | 6 | | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | 8 | | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | (NETHORS) | | 10 | | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | | | 12 | | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | | | 14 | | | | | 1.00 | 0.99 | | | 16 | | | | | 1.00 | 0.99 | | | 18 | | | | | 1.00 | 1.00 | | | 20 | | | | | 1.00 | 1.00 | | | | | | | | | | | 3/8 2% 8 4 1.00 1.00 1.00 1.00 1/2 31/2 8 4 0.93 0.93 0.97 1.00 5/8 4% 8 4 0.86 0.86 0.93 1.00 3/4 51/4 8 4 0.80 0.80 0.90 1.00 - 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column. - 6. Multiply the allowable load by the applicable load adjustment factor. - 7. Reduction factors for multiple edges or spacings are multiplied together. #### Edge or End Distance Shear (f_c) | Lage | Jo. | | | (.() | | | | |---------------------------|-------------------|------|------|------|------|------|---------------| | | Dia. | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | IBC | | | Ε | 13/4 | 25/8 | 31/2 | 43/8 | 51/4 | | | c _{act}
(in.) | C _{cr} | 12 | 12 | 12 | 20 | 20 | \rightarrow | | (111.) | C _{min} | 2 | 4 | 4 | 4 | 4 | 8V 83 | | | f _{cmin} | 0.88 | 0.71 | 0.60 | 0.36 | 0.28 | (F) | | 2 | | 0.88 | | | | | | | 4 | | 0.90 | 0.71 | 0.60 | 0.36 | 0.28 | | | 6 | | 0.93 | 0.78 | 0.70 | 0.44 | 0.37 | /—J | | 8 | | 0.95 | 0.86 | 0.80 | 0.52 | 0.46 | SECTION S. | | 10 | | 0.98 | 0.93 | 0.90 | 0.60 | 0.55 | | | 12 | | 1.00 | 1.00 | 1.00 | 0.68 | 0.64 | | | 14 | | | | | 0.76 | 0.73 | | | 16 | | | | | 0.84 | 0.82 | | | 18 | | | | | 0.92 | 0.91 | | | 20 | | | | | 1.00 | 1.00 | | IBC | Dia. | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | |-------------------|-----------------|--|------|--|---| | Ε | 13/4 | 25/8 |
31/2 | 43/8 | 51/4 | | Scr | 8 | 8 | 8 | 8 | 8 | | Smin | 4 | 4 | 4 | 4 | 4 | | f _{smin} | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | S _{Cr} | E 1¾4 S _{Cr} 8 S _{min} 4 f _{smin} 1.00 1.00 | | E 1¾ 2½ 3½ S _{Cr} 8 8 8 S _{min} 4 4 4 f _{smin} 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | E 1¾ 25% 3½ 4% S _{CI} 8 8 8 8 S _{min} 4 4 4 4 f _{smin} 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | Load Adjustment Factors for Carbon-Steel Strong-Bolt 2 Wedge Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads **IBC** ## **End Distance** Spacing Tension (f_s) Dia. Ε s_{cr} Smin f_{smin} Sact (in.) 4 6 8 1/4 13/4 8 4 1.00 1.00 1.00 1.00 | rensio | n (ī _c) | | | | |---------------------------|---------------------|------|------|-----------| | | Dia. | 1/2 | 5/8 | IBC | | _ | Ε | 31/2 | 43/8 | | | s _{act}
(in.) | C _{cr} | 12 | 12 | 1 | | (111.) | C _{min} | 4 | 4 | 8V 88 | | | f _{cmin} | 1.00 | 1.00 | (= = = | | 4 | | 1.00 | 1.00 | | | 6 | | 1.00 | 1.00 | | | 8 | | 1.00 | 1.00 | | | 10 | | 1.00 | 1.00 | _ | | 12 | | 1.00 | 1.00 | | # End Distance Shear | 'erper | laicula | ir io Ec | ige (i _c) | | |---------------------------|-------------------|----------|-----------------------|-------| | | Dia. | 1/2 | 5/8 | IBC | | _ | Ε | 31/2 | 43/8 | | | c _{act}
(in.) | C _{cr} | 12 | 12 | | | (111.) | C _{min} | 4 | 4 | 20 20 | | | f _{cmin} | 0.90 | 0.83 | (== = | | 4 | | 0.90 | 0.83 | | | 6 | | 0.93 | 0.87 | | | 8 | | 0.95 | 0.92 | | | 10 | | 0.98 | 0.96 | | | 12 | | 1.00 | 1.00 | | | | | | | | #### **End Distance** Shear Parallel to Edge (f_o) | orical raialion to Lago (Ic) | | | | | | | |------------------------------|-------------------|------|------|--|--|--| | | Dia. | 1/2 | 5/8 | | | | | _ | Ε | 31/2 | 4% | | | | | c _{act}
(in.) | C _{cr} | 12 | 12 | | | | | | C _{min} | 4 | 4 | | | | | | f _{cmin} | 0.53 | 0.50 | | | | | 4 | | 0.53 | 0.50 | | | | | 6 | | 0.65 | 0.63 | | | | | 8 | | 0.77 | 0.75 | | | | | 10 | | 0.88 | 0.88 | | | | | 12 | | 1.00 | 1.00 | | | | # Spacing Shear Perpendicular or Parallel to Edge (f) | or Parallel to Edge (Is) | | | | | | | |---------------------------|-------------------|------|------|--|--|--| | | Dia. | 1/2 | 5/8 | | | | | | Ε | 31/2 | 4% | | | | | s _{act}
(in.) | Scr | 8 | 8 | | | | | | Smin | 4 | 4 | | | | | | f _{cmin} | 1.00 | 1.00 | | | | | 4 | | 1.00 | 1.00 | | | | | 6 | | 1.00 | 1.00 | | | | | 8 | | 1.00 | 1.00 | | | | | Spacir | ng Tens | sion († _{s.} |) | | |---------------------------|-------------------|-----------------------|------|--------------------| | s _{act}
(in.) | Dia. | 1/2 | 5/8 | IBC | | | Ε | 31/2 | 4% | | | | s _{cr} | 8 | 8 | | | | Smin | 4 | 4 | | | | f _{cmin} | 0.93 | 0.86 | (22) | | 4 | | 0.93 | 0.86 | | | 6 | | 0.97 | 0.93 | n n | | 8 | | 1.00 | 1.00 | Ĭ 4 → N | * See p. 13 for an explanation of the load table icons