C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

Strong-Bolt® 2 Design Information — Concrete

Carbon-Steel Strong-Bolt 2 Installation Information¹

Carbon-Steel Strong-E			on inionnati			No	minal An	chor Diai	neter, d _a	(in.)				200 (2000)
Characteristic	Symbol	Units	1/44	3/8	5 3		1/25		5,	⁄8 ⁵	3,	⁄ ₄ ⁵		1 ⁵
				Instal	lation Inf	ormation								
Nominal Diameter	da	in.	1/4	3,	%		1/2		5	/8	3	V/4		1
Drill Bit Diameter	d	in.	1/4	3,	3/8		1/2		5/8		3/4			1
Baseplate Clearance Hole Diameter ²	d_{c}	in.	5/16	7/-	16	9/16			11	/16	7/8		1	1/8
Installation Torque	T _{inst}	ft-lbf	4	3	30		60		90		150		2	30
Nominal Embedment Depth	h _{nom}	in.	13⁄4	17/8	27/8	2	3/4	37/8	3%	51/8	41/8	5¾	51/4	9¾
Effective Embedment Depth	h _{ef}	in.	1½	1½	21/2	2	1/4	3%	23/4	41/2	3%	5	41/2	9
Minimum Hole Depth	h _{hole}	in.	1 1/8	2	3		3	41/8	35/8	5%	4%	6	5½	10
Minimum Overall Anchor Length	ℓ_{anch}	in.	21/4	23/4	3½	3	3/4	5½	41/2	6	5½	7	7	13
Critical Edge Distance	Cac	in.	2½	61/2	6	6½	6½	7½	7½	9	9	8	18	13½
M: 51 D: 1	C _{min}	in.	13/4	6	3	7	4	4	6	1/2	6	1/2		8
Minimum Edge Distance	for s ≥	in.	_	_	_			_		8	-	_		
Mr. i	S _{min}	in.	21/4	3	3	7	7 4 4 5			7		8		
Minimum Spacing	<i>for c</i> ≥	in.	_	_	8		8	-	_					
Minimum Concrete Thickness	h _{min}	in	31/4	31/4	41/2	41/2	5½	6	5½	77/8	6¾	8¾	8	13½
	'			A	dditional	Data		,			•		'	-
Yield Strength	f _{ya}	psi	56,000	92,0	92,000 85,000						70,	000	60,	,000
Tensile Strength	f _{uta}	psi	70,000	115,000			0,000 115,000 110,000		,000	78,	,000			
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.0318	0.0514		0.0318 0.0514 0.105 0.166 0.270		0.105		0.166		270	70 0.472	
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	73,700³	34,8	320		91,370		118,840		299,600			

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

^{2.} The clearance must comply with applicable code requirements for the connected element.

^{3.} The tabulated value of β for 1/4"-diameter carbon steel Strong-Bolt 2 anchor is for installations in uncracked concrete only.

^{4.} The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

^{5.} The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

IBC

Stainless-Steel Strong-Bolt 2 Installation Information¹

Characteristic	Symbol	Units			No	minal And	chor Dian	neter, d _a	(in.)				
Unaracteristic	Symbol	Units	1/44	3/	é ⁵		1/25		5/	⁄8 ⁵	3,	⁄4 ⁵	
			Installation Ir	nformatio	n								
Nominal Diameter	da	in.	1/4	3,	/ 8		1/2		5,	/8	3,	V ₄	
Drill Bit Diameter	d	in.	1/4	3/8			1/2		5	/8	3/4		
Baseplate Clearance Hole Diameter ²	d_{c}	in.	5/16	7/16		9/16		11/16		7,	⁷ /8		
Installation Torque	T _{inst}	ft-lbf	4	3	30		65		80		1	50	
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1%	27/8	23/4	3	7/8	3%	51/8	41/8	53/4	
Effective Embedment Depth	h _{ef}	in.	11/2	1½	2½	21/4	3	3/8	2¾	4½	3%	5	
Minimum Hole Depth	h _{hole}	in.	17/8	2	3	3	4	1/8	35/8	5%	43/8	6	
Minimum Overall Anchor Length	ℓ _{anch}	in.	21/4	23/4	3½	3¾	5	1/2	41/2	6	5½	7	
Critical Edge Distance	Cac	in.	2½	6½	8½	41/2	-	7	7½	9	8	8	
	C _{min}	in.	13/4	(3	61/2	5	4		4	(6	
Minimum Edge Distance	for s ≥	in.	_	1	10		_	8		3	_	_	
	S _{min}	in.	21/4	(3 8		5½	4	6	1/4	6	1/2	
Minimum Spacing	for c ≥	in.	_	1	10 —		8		5	1/2	_	_	
Minimum Concrete Thickness	h _{min}	in.	31/4	31/4	41/2	41/2	(5	5½	77/8	6¾	83/4	
			Additiona	ıl Data									
Yield Strength	f _{ya}	psi	96,000	80,000		5,000 80,000 92,000 82,000		92,000		000	68,	000	
Tensile Strength	f _{uta}	psi	120,000	100,000		100,000		115,000		108,000		95,000	
Minimum Tensile and Shear Stress Area	Ase	in.²	n. ² 0.0255 0.0514 0.105 0.166		0.0514		0.0514 0.105		166	0.2	270		
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	54,430 ³	29,150		29,150 54,900		61,	270	154	,290		

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

^{2.} The clearance must comply with applicable code requirements for the connected element.

^{3.} The tabulated value of β for 1/4"-diameter stainless-steel Strong-Bolt 2 anchor is for installtions in uncracked concrete only.

^{4.} The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

^{5.} The %"- through %"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

Strong-Bolt® 2 Design Information — Concrete

0 1 01	0. 5.1.0	-	O	D 1 D 1 1
Carbon-Stee	Strong-Bolt 2	lension	Strength	Design Data ¹

Oarbon-Steel Strong-Bolt 2 Ten		Ŭ.	Nominal Anchor Diameter, d _a (in.)										
Characteristic	Symbol	Units	1/48	3/	6 ⁹	1,		5,	 ∕8 ⁹	3/	4 ⁹	1	9
Anchor Category	1, 2 or 3	_				1						2	2
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1 1/8	21/8	2¾	37/8	3%	51/8	41/8	5¾	51/4	9¾
		Steel	Strength in Tensio	n (ACI 3	18 Section	on D.5.1))						
Steel Strength in Tension	N _{sa}	lb.	2,225	5,6	600	12,	100	19,	070	29,	700	36,	815
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.7	' 5					0.	65
	Conc	rete Brea	akout Strength in ⁻	Tension	(ACI 318	Section	D.5.2)10						
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	23/4	41/2	3%	5	4½	9
Critical Edge Distance	Cac	in.	21/2	6½	6	6½	7½	7½	9	9	8	18	13½
Effectiveness Factor — Uncracked Concrete	k _{uncr}	_	24										
Effectiveness Factor — Cracked Concrete	k _{cr}		7					1	7				
Modification Factor	$\psi_{c,N}$		7					1.	00				
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_				0.6	35					0.	55
		Pullout	Strength in Tensio	n (ACI 3	18 Secti	on D.5.3)10						
Pullout Strength, Cracked Concrete $(f'_{c} = 2,500 \text{ psi})$	N _{p,cr}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9855	N/A ⁴	8,5005	7,7005	11,1855
Pullout Strength, Uncracked Concrete $(f_C^1 = 2,500 \text{ psi})$	N _{p,uncr}	lb.	N/A ⁴	N/A ⁴	3,3405	3,6155	5,2555	N/A ⁴	9,0255	7,1155	8,8705	8,3605	9,6905
Strength Reduction Factor — Pullout Failure ⁶	ϕ_p	_	0.65 0.55										
	Tensile	Strengt	h for Seismic App	lications	(ACI 31	8 Section	1 D.3.3.)¹	0					
Tension Strength of Single Anchor for Seismic Loads ($f_c = 2,500 \text{ psi}$)	N _{p.eq}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9855	N/A ⁴	8,5005	7,7005	11,185 ⁵
Strength Reduction Factor — Pullout Failure ⁶	ϕ_{eq}	_	0.65 0.55										

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. N/A (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5.
- 6. The tabulated value of ϕ_D or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 7. The ¼"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 8. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 9. The %"- through %"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

^{*} See p. 13 for an explanation of the load table icons

Stainless-Steel Strong-Bolt 2 Tension Strength Design Data¹

0.65

Characteristic	Cumbal	Units	Nominal Anchor Diameter, d _a (in.)											
Granacteristic	Symbol	Ullits	1/410	3/	8 ¹¹	1,	/ ¹¹ 2	5/	/8 ¹¹	3/	411			
Anchor Category	1, 2 or 3	_					1							
Nominal Embedment Depth	h _{nom}	in.	13/4	1 1/8	27/8	2¾	37/8	3%	51/8	41/8	5¾			
	Steel Stre	ngth in Te	ension (ACI 318 Se	8 Section D.5.1)										
Steel Strength in Tension	N _{sa}	lb.	3,060	5,1	40	12,	075	17,	930	25,	650			

Strength Reduction Factor — Steel Failure² ϕ_{sa} 0.75 Concrete Breakout Strength in Tension (ACI 318 Section D.5.2)12 5 h_{ef} Effective Embedment Depth 1 1/2 21/2 21/4 3% 23/4 41/2 3% 11/2 8 Critical Edge Distance in 21/2 61/2 81/2 41/2 7 71/2 9 8 c_{ac} Effectiveness Factor — Uncracked Concrete 24

Effectiveness Factor — Cracked Concrete	k _{cr}	9	17
Modification Factor	$\psi_{c,N}$	9	1.00

Strength Reduction Factor — Concrete Breakout Failure ³	¢	cb	_		

Pullout Strength, Cracked Concrete (f' $_{\mathcal{C}}=2,500$ psi)	N _{p,cr}	lb.	9	1,720 ⁶	3,1456	2,5605	4,3055	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
Pullout Strength, Uncracked Concrete ($f'_c = 2,500 \text{ psi}$)	N _{p,uncr}	lb.	1,925 ⁷	N/A ⁴	4,7706	3,2305	4,4955	N/A ⁴	7,6155	7,725 ⁷	9,6257
Strength Reduction Factor — Pullout Failure ⁸	ϕ_p	_				0.	65				

Pullout Strength in Tension (ACI 318 Section D.5.3)12

Tensile Strength for Seismic Applications (ACI 318 Section D.3.3.)12

Tension Strength of Single Anchor for Seismic Loads (f' $_{\text{C}}$ = 2,500 psi)	N _{p.eq}	lb.	9	1,7206	2,830 ⁶	2,560⁵	4,305⁵	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
	,					0	0.5				

Strength Reduction Factor — Pullout Failure8 0.65

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below.
- The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4.
- 3. The tabulated value of φ_{Ch} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. N/A (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5.
- 6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f°_c/2,500 psi)^{0.3}.
- The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c/2,500 psi)^{0.4}.
- The tabulated value of ϕ_p or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACl 318-11 Section D.4.4(c).
- 9. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 10. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 11. The %"- through 3/4"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

^{*} See p. 13 for an explanation of the load table icons.

Carbon-Steel Strong-Bolt 2 Shear Strength Design Data¹

Characteristic	Cumbal	Units	Nominal Anchor Diameter, d _a (in.)										
Characteristic	Symbol	Units	1/46	3,	⁄8 ⁷	1/:	′2 ⁷	5/	/8 ⁷	3/	4 ⁷	1	7
Anchor Category	1, 2 or 3	_				1	1						2
Nominal Embedment Depth	h _{nom}	in.	13/4	1%	27/8	23/4	3%	3%	51/8	41/8	5¾	51/4	9¾
			Steel Strength in	eel Strength in Shear (ACI 318 Section D.6.1)									
Steel Strength in Shear	V _{sa}	lb.	965	1,8	300	7,2	235	11,	035	14,	480	15,	020
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_	0.65									60	
		Concre	ete Breakout Strength in Shear (ACI 318 Section D.6.2) ⁸										
Outside Diameter	da	in.	0.25 0.375 0.500 0.625 0.750 1.00										00
Load-Bearing Length of Anchor in Shear	ℓ_e	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000	4.500	8.000
Strength Reduction Factor — Concrete Breakout Failure ²	$\phi_{\it cb}$	_					0.7	70					
		Cond	rete Pryout Stren	gth in Sh	ear (ACI	318 Secti	on D.6.3)						
Coefficient for Pryout Strength	k _{cp}	_	1.0		2.0	1.0				2.0			
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	23/4	41/2	3%	5	41/2	9
Strength Reduction Factor — Concrete Pryout Failure ⁴	ϕ_{cp}	_					0.7	70					
	Ste	eel Stren	ength in Shear for Seismic Applications(ACI 318 Section D.3.3.)										
Shear Strength of Single Anchor for Seismic Loads ($f'_c = 2,500 \text{ psi}$)	V _{sa.eq}	lb.	5	1,8	300	6,5	510	9,9	930	11,	775	15,	020
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_	0.65 0.60										

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of ϕ_{cp} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{cp} must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 5. The 1/4"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 7. The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

Stainless-Steel Strong-Bolt 2 Shear Strength Design Data¹

Chamatanistia	Compleal	Heite	Nominal Anchor Diameter, d _a (in.)									
Characteristic	Symbol	Units	1/46	3/	′в ⁷	1	/ ₂ 7	5,	⁄8 ⁷	3/	47	
Anchor Category	1, 2 or 3	_	1									
Nominal Embedment Depth	h _{nom}	in.	13⁄4	17/8	27/8	23/4	37/8	3%	51/8	41/8	5¾	
	Steel Stre	ngth in S	hear (ACI 318 Sec	ction D.6.	1)							
Steel Strength in Shear	V _{sa}	lb.	1,605	3,0)85	7,2	245	6,745	10,760	15,	045	
Strength Reduction Factor — Steel Failure ²	φ _{sa}	_	0.65									
Concr	ete Breako	ut Streng	th in Shear (ACI 3	18 Section	on D.6.2)	8						
Outside Diameter	da	in.	0.250	0.3	375	0.0	500	0.6	625	0.7	'50	
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000	
Strength Reduction Factor — Concrete Breakout Failure ³	фсь					0.	70					
Con	crete Pryou	t Strengt	h in Shear (ACI 31	18 Section	n D.6.3)							
Coefficient for Pryout Strength	k _{cp}	_	1.0		2.0	1.0			2.0			
Effective Embedment Depth	h _{ef}	in.	1½	11/2	2½	21/4	3%	23/4	41/2	3%	5	
Strength Reduction Factor — Concrete Pryout Failure ⁴	фср	_	0.70									
Steel Stren	gth in Shea	r for Seis	Seismic Applications (ACI 318 Section D.3.3.)									
Shear Strength of Single Anchor for Seismic Loads (${\rm f'}_{\it C}=2{,}500~{\rm psi}$)	V _{sa.eq}	lb.	o. — ⁵ 3,085 6,100 6,745 10,760 13,620									
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_	0.65									

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of φ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of ϕ_{CP} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{CP} must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 5. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 7. The %"- through 34"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

^{*} See p. 13 for an explanation of the load table icons.

Carbon-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

Design Information	Cumbal	Units	Nominal	Anchor Diam	eter (in.)
Design information	Symbol	UIIIIS	3,	/8	1/2
Nominal Embedment Depth	h _{nom}	in.	1	2¾	
Effective Embedment Depth	h _{ef}	in.	1	21/4	
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21/2	31/4	31/4
Critical Edge Distance	C _{ac,deck,top}	in.	43/4	4	4
Minimum Edge Distance	C _{min, deck, top}	in.	43/4	41/2	43/4
Minimum Spacing	S _{min,deck,top}	in.	7	61/2	8

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on p. 136 and Figure 1 below.
- Design capacity shall be based on calculations according to values in the tables on pp. 138 and 140.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is $1\frac{1}{2}$ ".
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness (*h_{min,deck}*) refers to concrete thickness above upper flute.

Stainless-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

Decign Information	Cumbal	Units	Nominal Anchor Diameter (in.)				
Design Information	Symbol	UIIILS	3,	/8	1/2		
Nominal Embedment Depth	h _{nom}	in.	17/8		23/4		
Effective Embedment Depth	h _{ef}	in.	11/2		21/4		
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21/2	31/4	31/4		
Critical Edge Distance	C _{ac,deck,top}	in.	43/4	4	4		
Minimum Edge Distance	C _{min,deck,top}	in.	4	3/4	6		
Minimum Spacing	S _{min,deck,top}	in.	6	1/2	8		

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on p. 137 and Figure 1 below.
- 2. Design capacity shall be based on calculations according to values in the tables on pp. 139 and 141.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 1½".
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness (*h_{min,deck}*) refers to concrete thickness above upper flute.

* See p. 13 for an explanation of the load table icons

Mechanical Anchors

Strong-Bolt® 2 Design Information — Concrete

SIMPSON Strong-Tie

Carbon-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,8,9}

						Nominal A	nchor Dia	meter (in.))		
Characteristic	Symbol	Units				C	arbon Ste	el			
	Syllibol	UIIILS			L	ower Flut	е			Upper Flute	
			3,	/ ₈	1,	/2	5,	/ ₈	3/4	3/8	1/2
Nominal Embedment Depth	h _{nom}	in.	2	3%	23/4	41/2	3%	5%	41/8	2	2¾
Effective Embedment Depth	h _{ef}	in.	1 5/8	3	21/4	4	23/4	5	3%	1 1 1/8	21/4
Installation Torque	T _{inst}	ftlbf.	3	10	6	0	9	0	150	30	60
Pullout Strength, concrete on metal deck (cracked)3,4	N _{p,deck,cr}	lb.	1,040 ⁷	2,615 ⁷	2,0407	2,730 ⁷	2,615 ⁷	4,9907	2,815 ⁷	1,340 ⁷	3,785 ⁷
Pullout Strength, concrete on metal deck (uncracked)3,4	N _{p,deck,uncr}	lb.	1,765 ⁷	3,150 ⁷	2,580 ⁷	3,8407	3,6857	6,565 ⁷	3,8007	2,275 ⁷	4,795 ⁷
Pullout Strength, concrete on metal deck (seismic)3,4	N _{p,deck,eq}	lb.	1,0407	2,615 ⁷	2,0407	2,730 ⁷	2,615 ⁷	4,9907	2,815 ⁷	1,340 ⁷	3,785 ⁷
Steel Strength in Shear, concrete on metal deck ⁵	V _{sa,deck}	lb.	1,595	3,490	2,135	4,580	2,640	7,000	4,535	3,545	5,920
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	1,595	3,490	1,920	4,120	2,375	6,300	3,690	3,545	5,330

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies $N_{\mathcal{D},deck,cr}$ shall be substituted for $N_{\mathcal{D},cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in

- uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for N_p .
- 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{Sa}, deck shall be substituted for V_{Sa}. For seismic loads, V_{Sa,deck,eq} shall be substituted for V_{Sa}.
- 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{\it ef}$ or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_c/3,000~\mathrm{psi})^{0.5}$.
- 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_C, of 3,000 psi.
- 9. Minimum distance to edge of panel is 2h_{ef}.

Stainless-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,10,11}

			Stainless Steel									
Characteristic	Symbol	Units	Lower Flute								Upper Flute	
			3,	/ ₈	1	/2	5,	/ ₈	3/4	3/8	1/2	
Nominal Embedment Depth	h _{nom}	in.	2	3%	23/4	41/2	3%	5%	41/8	2	2¾	
Effective Embedment Depth	h _{ef}	in.	1%	3	21/4	4	23/4	5	3%	1 5/8	21/4	
Installation Torque	T _{inst}	ftlbf.	3	30	6	5	8	0	150	30	65	
Pullout Strength, concrete on metal deck (cracked) ³	N _{p,deck,cr}	lb.	1,2308	2,6058	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,0209	3,0307	1,5508	2,055 ⁷	
Pullout Strength, concrete on metal deck (uncracked) ³	N _{p,deck,uncr}	lb.	1,5808	3,9508	2,475 ⁷	2,660 ⁷	2,470 ⁷	5,000 ⁷	4,2759	1,9908	2,560 ⁷	
Pullout Strength, concrete on metal deck (seismic) ⁵	N _{p,deck,eq}	lb.	1,230 ⁸	2,3458	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,0209	3,0307	1,5508	2,055 ⁷	
Steel Strength in Shear, concrete on metal deck4	V _{sa,deck}	lb.	2,285	3,085	3,430	4,680	3,235	5,430	6,135	3,085	5,955	
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	2,285	3,085	2,400	3,275	3,235	5,430	5,520	3,085	4,170	

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N_{D,deck,cr} shall be substituted for N_{D,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{D,deck,uncr} shall be substituted for N_{D,uncr}. For seismic loads, N_{D,deck,eq} shall be substituted for N_D.
- 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa}, deck,eq shall be substituted for V_{sa}.
- The minimum anchor spacing along the flute must be the greater of 3.0hef or 1.5 times the flute width.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_C / 3,000 psi)^{0.5}.
- 8. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_c^*/3,000~\mathrm{psi})^{0.3}$.
- 9. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f' $_{\rm C}$ / 3,000 psi) $^{0.4}$.
- Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.
- 11. Minimum distance to edge of panel is 2hef.

^{*} See p. 13 for an explanation of the load table icons.

Carbon-Steel Strong-Bolt 2 Anchor Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck, Floor and Roof Assemblies^{1,2,6,8,9}

			Carbon Steel Nominal Anchor Diameter (in.)							
Characteristic	Symbol	Units	Installed in Lower Flute							
			3,	/8	1,	/2	5,	%		
Nominal Embedment Depth	h _{nom}	in.	2	3%	23/4	41/2	3%	5%		
Effective Embedment Depth	h _{ef}	in.	1%	3	21/4	4	23/4	5		
Minimum Hole Depth	h _{hole}	in.	21/8	3½	3	43/4	3%	5%		
Minimum Concrete Thickness	h _{min,deck}	in.	2	2	2	31/4	2	31/4		
Installation Torque	T _{inst}	ftlbf.	3	0	6	60	9	0		
Pullout Strength, concrete on metal deck (cracked)3,4,7	N _{p,deck,cr}	lb.	1,295	2,705	2,585	4,385	3,015	5,120		
Pullout Strength, concrete on metal deck (uncracked) ^{3,4,7}	N _{p,deck,uncr}	lb.	2,195	3,260	3,270	6,165	4,250	6,735		
Pullout Strength, concrete on metal deck (seismic) ^{3,4,7}	N _{p,deck,eq}	lb.	1,295	2,705	2,585	4,385	3,015	5,120		
Steel Strength in Shear, concrete on metal deck ⁵	V _{sa,deck}	lb.	1,535	3,420	2,785	5,950	3,395	6,745		
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	1,535	3,420	2,505	5,350	3,055	6,070		

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 3 below, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 50 with minimum yield strength of 50,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies $N_{p,deck,cr}$ shall be substituted for $N_{p,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for N_p .
- 5. In accordance with ACI 318-14 Section 17.5.1.2(c) or ACI 318-11, the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa,deck,eq} shall be substituted for V_{sa}.
- 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{ef}$ or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_C^*/3,000 \text{ ps})^{0.5}$.
- 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.
- 9. Minimum distance to edge of panel is $2h_{ef}$

Figure 3

^{*} See p. 13 for an explanation of the load table icons

Strong-Bolt® 2 Design Information — Masonry

Mechanical Anchors

Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

IBC 👚	→	7
-------	----------	---

Size	Drill Bit	Min. Embed.	Install. Torque				Tension Load		r Load	
in. (mm)	Dia. (in.)	Depth in. (mm)	ftlb. (N-m)	Edge Dist. in. (mm)	End Dist. in. (mm)	Spacing in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
			Anchor	Installed in the	Face of the C	/IU Wall (See Fi	gure 1)			
1/4 (6.4)	1/4	13/4 (45)	4 (5.4)	12 (305)	12 (305)	8 (203)	1,150 (5.1)	230 (1.0)	1,500 (6.7)	300 (1.3)
3/8 (9.5)	3/8	25/8 (67)	20 (27.1)	12 (305)	12 (305)	8 (203)	2,185 (9.7)	435 (1.9)	3,875 (17.2)	775 (3.4)
½ (12.7)	1/2	3½ (89)	35 (47.5)	12 (305)	12 (305)	8 (203)	2,645 (11.8)	530 (2.4)	5,055 (22.5)	1,010 (4.5)
5% (15.9)	5/8	4 % (111)	55 (74.6)	20 (508)	20 (508)	8 (203)	4,460 (19.8)	890 (4.0)	8,815 (39.2)	1,765 (7.9)
3/4 (19.1)	3/4	51⁄4 (133)	100 (135.6)	20 (508)	20 (508)	8 (203)	5,240 (23.3)	1,050 (4.7)	12,450 (55.4)	2,490 (11.1)

- The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Listed loads may be applied to installations on the face of the CMU wall at least 11/4" away from headjoints.
- 3. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m , at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit.
- 5. Tension and shear loads may be combined using the parabolic interaction equation (n = $\frac{4}{3}$).
- Refer to allowable load adjustment factors for edge distance and spacing on p. 146.
- Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code.

Figure 1

Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-weight and Normal-Weight Grout-Filled CMU

Size Drill Bit		Dia Denth Iorqu		Min. Edge. Dist.			Tensio	Tension Load		Shear Load Perp. To Edge		Shear Load Parallel To Edge	
in. (mm)	in.	in. (mm)	ftÌb. (N-m)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	
			А	nchor Install	ed in Cell Ope	ening or Web	(Top of Wall)	(See Figure	2)				
½ (12.7)	1/2	3½ (89)	35 (47.5)	13/4 (45)	12 (305)	8 (203)	2,080 (9.3)	415 (1.8)	1,165 (5.2)	235 (1.0)	3,360 (14.9)	670 (3.0)	
5% (15.9)	5/8	4 % (111)	55 (74.6)	13/4 (45)	12 (305)	8 (203)	3,200 (14.2)	640 (2.8)	1,370 (6.1)	275 (1.2)	3,845 (17.1)	770 (3.4)	

- The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m , at 28 days is 1,500 psi.
- 3. Tension and shear loads may be combined using the parabolic interaction equation (n = 5%).
- 4. Refer to allowable load adjustment factors for edge distance and spacing on p. 146.
- 5. Allowable loads may be increased 33%% for short-term loading due to wind forces or seismic forces where permitted by code.

Figure 2

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

Strong-Bolt® 2 Design Information — Masonry

Carbon-Steel Strong-Bolt 2 Allowable Load Adjustment Factors for Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.

Edge or End Distance Tension (f.)

Luge	JI LIIU	Distai	ICC ICI	131011 (1	C)		_
	Dia.	1/4	3/8	1/2	5/8	3/4	IBC
	Ε	13/4	2%	31/2	4%	51/4	
c _{act} (in.)	c _{cr}	12	12	12	20	20	
(111.)	C _{min}	2	4	4	4	4	87 B2
	f _{cmin}	1.00	1.00	1.00	1.00	0.97	(22)
2		1.00					
4		1.00	1.00	1.00	1.00	0.97	
6		1.00	1.00	1.00	1.00	0.97	
8		1.00	1.00	1.00	1.00	0.98	(NETHORS)
10		1.00	1.00	1.00	1.00	0.98	
12		1.00	1.00	1.00	1.00	0.99	
14					1.00	0.99	
16					1.00	0.99	
18					1.00	1.00	
20					1.00	1.00	

3/8

2%

8

4

1.00

1.00

1.00

1.00

1/2

31/2

8

4

0.93

0.93

0.97

1.00

5/8

4%

8

4

0.86

0.86

0.93

1.00

3/4

51/4

8

4

0.80

0.80

0.90

1.00

- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge or End Distance Shear (f_c)

Lage	Jo.			(.()			
	Dia.	1/4	3/8	1/2	5/8	3/4	IBC
	Ε	13/4	25/8	31/2	43/8	51/4	
c _{act} (in.)	C _{cr}	12	12	12	20	20	\rightarrow
(111.)	C _{min}	2	4	4	4	4	8V 83
	f _{cmin}	0.88	0.71	0.60	0.36	0.28	(F)
2		0.88					
4		0.90	0.71	0.60	0.36	0.28	
6		0.93	0.78	0.70	0.44	0.37	/—J
8		0.95	0.86	0.80	0.52	0.46	SECTION S.
10		0.98	0.93	0.90	0.60	0.55	
12		1.00	1.00	1.00	0.68	0.64	
14					0.76	0.73	
16					0.84	0.82	
18					0.92	0.91	
20					1.00	1.00	

IBC

Dia.	1/4	3/8	1/2	5/8	3/4
Ε	13/4	25/8	31/2	43/8	51/4
Scr	8	8	8	8	8
Smin	4	4	4	4	4
f _{smin}	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00
	S _{Cr}	E 1¾4 S _{Cr} 8 S _{min} 4 f _{smin} 1.00 1.00		E 1¾ 2½ 3½ S _{Cr} 8 8 8 S _{min} 4 4 4 f _{smin} 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	E 1¾ 25% 3½ 4% S _{CI} 8 8 8 8 S _{min} 4 4 4 4 f _{smin} 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Load Adjustment Factors for Carbon-Steel Strong-Bolt 2 Wedge Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

IBC

End Distance

Spacing Tension (f_s)

Dia.

Ε

 s_{cr} Smin

f_{smin}

Sact (in.)

4 6

8

1/4

13/4

8

4

1.00

1.00

1.00

1.00

rensio	n (ī _c)			
	Dia.	1/2	5/8	IBC
_	Ε	31/2	43/8	
s _{act} (in.)	C _{cr}	12	12	1
(111.)	C _{min}	4	4	8V 88
	f _{cmin}	1.00	1.00	(= = =
4		1.00	1.00	
6		1.00	1.00	
8		1.00	1.00	
10		1.00	1.00	_
12		1.00	1.00	

End Distance Shear

'erper	laicula	ir io Ec	ige (i _c)	
	Dia.	1/2	5/8	IBC
_	Ε	31/2	43/8	
c _{act} (in.)	C _{cr}	12	12	
(111.)	C _{min}	4	4	20 20
	f _{cmin}	0.90	0.83	(== =
4		0.90	0.83	
6		0.93	0.87	
8		0.95	0.92	
10		0.98	0.96	
12		1.00	1.00	

End Distance Shear Parallel to Edge (f_o)

orical raialion to Lago (Ic)						
	Dia.	1/2	5/8			
_	Ε	31/2	4%			
c _{act} (in.)	C _{cr}	12	12			
	C _{min}	4	4			
	f _{cmin}	0.53	0.50			
4		0.53	0.50			
6		0.65	0.63			
8		0.77	0.75			
10		0.88	0.88			
12		1.00	1.00			

Spacing Shear

Perpendicular or Parallel to Edge (f)

or Parallel to Edge (Is)						
	Dia.	1/2	5/8			
	Ε	31/2	4%			
s _{act} (in.)	Scr	8	8			
	Smin	4	4			
	f _{cmin}	1.00	1.00			
4		1.00	1.00			
6		1.00	1.00			
8		1.00	1.00			

Spacir	ng Tens	sion († _{s.})	
s _{act} (in.)	Dia.	1/2	5/8	IBC
	Ε	31/2	4%	
	s _{cr}	8	8	
	Smin	4	4	
	f _{cmin}	0.93	0.86	(22)
4		0.93	0.86	
6		0.97	0.93	n n
8		1.00	1.00	Ĭ 4 → N

* See p. 13 for an explanation of the load table icons

